АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ «Информатика»

10 — 11 КЛАСС (углублённый уровень)

Нормативно – правовые основания разработки рабочей программы

Рабочая программа составлена в соответствии с Федеральным законом от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации», требованиями федерального государственного образовательного стандарта среднего общего образования утвержденного приказом Минпросвещения от 31 мая 2021 г. № 287, федеральной образовательной программой среднего общего образования, утвержденной приказом Минпросвещения от 18.05.2023 № 371, на основе основной общеобразовательной программы среднего общего образования МАОУ «Лицей №5», на основе Федеральной рабочей программы по учебному предмету «Информатика (углублённый уровень)» для 10 – 11 классов.

Планируемые результаты освоения программы по информатике включают личностные, метапредметные результаты за весь период обучения на уровне основного общего образования, а также предметные достижения обучающегося за каждый год обучения.

Место учебного предмета в учебном плане

В соответствии с учебным планом на изучение учебного предмета «Информатика (углублённый уровень)» с 10 по 11 класс отводится 272 часа.

В 10 классе — 136 часов (4 часа в неделю, 34 учебные недели), в 11 классе — 136 часа (4 часа в неделю, 34 учебные недели).

Предметные результаты освоения учебного предмета «Информатика» (углублённый уровень)

- В процессе изучения курса информатики углублённого уровня **в 10 классе** обучающимися будут достигнуты следующие предметные результаты:
- владение представлениями о роли информации и связанных с ней процессов в природе, технике и обществе, понятиями «информация», «информационный процесс», «система», «компоненты системы», «системный эффект», «информационная система», «система управления»;
- владение методами поиска информации в сети Интернет, умение критически оценивать информацию, полученную из сети Интернет;
- умение характеризовать большие данные, приводить примеры источников их получения и направления использования, умение классифицировать основные задачи анализа данных (прогнозирование, классификация, кластеризация, анализ отклонений), понимать последовательность решения задач анализа данных: сбор первичных данных, очистка и оценка качества данных, выбор и/или построение модели, преобразование данных, визуализация данных, интерпретация результатов;
- понимание основных принципов устройства и функционирования современных стационарных и мобильных компьютеров, тенденций развития компьютерных технологий;
- владение навыками работы с операционными системами, основными видами программного обеспечения для решения учебных задач по выбранной специализации;
- наличие представлений о компьютерных сетях и их роли в современном мире, о базовых принципах организации и функционирования компьютерных сетей, об общих принципах разработки и функционирования интернет-приложений;
- понимание угроз информационной безопасности, использование методов и средств противодействия этим угрозам, соблюдение мер безопасности, предотвращающих

незаконное распространение персональных данных, соблюдение требований техники безопасности и гигиены при работе с компьютерами и другими компонентами цифрового окружения, понимание правовых основ использования компьютерных программ, баз данных и работы в сети Интернет;

- понимание основных принципов дискретизации различных видов информации, умение определять информационный объём текстовых, графических и звуковых данных при заданных параметрах дискретизации, умение определять среднюю скорость передачи данных, оценивать изменение времени передачи при изменении информационного объёма данных и характеристик канала связи;
- умение использовать при решении задач свойства позиционной записи чисел, алгоритма построения записи числа в позиционной системе счисления с заданным основанием и построения числа по строке, содержащей запись этого числа в позиционной системе счисления с заданным основанием, умение выполнять арифметические операции в позиционных системах счисления;
- умение выполнять преобразования логических выражений, используя законы алгебры логики, умение строить логическое выражение в дизъюнктивной и конъюнктивной нормальных формах по заданной таблице истинности, исследовать область истинности высказывания, содержащего переменные, решать несложные логические уравнения и системы уравнений;
- понимание базовых алгоритмов обработки числовой и текстовой информации (запись чисел в позиционной системе счисления, нахождение всех простых чисел в заданном диапазоне, обработка многоразрядных целых чисел, анализ символьных строк и других), алгоритмов поиска и сортировки, умение определять сложность изучаемых в курсе базовых алгоритмов (суммирование элементов массива, сортировка массива, переборные алгоритмы, двоичный поиск) и приводить примеры нескольких алгоритмов разной сложности для решения одной задачи;
- владение универсальным языком программирования высокого уровня (Python, Java, C+ +, C#), представлениями о базовых типах данных и структурах данных, умение использовать основные управляющие конструкции, умение осуществлять анализ предложенной программы: определять результаты работы программы при заданных исходных данных, определять, при каких исходных данных возможно получение указанных результатов, выявлять данные, которые могут привести к ошибке в работе программы, формулировать предложения по улучшению программного кода;
- умение создавать структурированные текстовые документы и демонстрационные материалы с использованием возможностей современных программных средств и облачных сервисов;
- умение использовать электронные таблицы для анализа, представления и обработки данных (включая вычисление суммы, среднего арифметического, наибольшего и наименьшего значений, решение уравнений, выбор оптимального решения, подбор линии тренда, решение задач прогнозирования).

В процессе изучения курса информатики углублённого уровня **в 11 классе** обучающимися будут достигнуты следующие предметные результаты:

- умение строить неравномерные коды, допускающие однозначное декодирование сообщений (префиксные коды), использовать простейшие коды, которые позволяют обнаруживать и исправлять ошибки при передаче данных, строить код, обеспечивающий наименьшую возможную среднюю длину сообщения при известной частоте символов, пояснять принципы работы простых алгоритмов сжатия данных;
- умение решать алгоритмические задачи, связанные с анализом графов (задачи построения оптимального пути между вершинами графа, определения количества различных путей между вершинами ориентированного ациклического графа), умение

использовать деревья при анализе и построении кодов и для представления арифметических выражений, при решении задач поиска и сортировки, умение строить дерево игры по заданному алгоритму, разрабатывать и обосновывать выигрышную стратегию игры;

- умение разрабатывать и реализовывать в виде программ базовые алгоритмы, умение использовать в программах данные различных типов с учётом ограничений на диапазон их возможных значений, применять при решении задач структуры данных (списки, словари, стеки, очереди, деревья), использовать базовые операции со структурами данных, применять стандартные и собственные подпрограммы для обработки числовых данных и символьных строк, использовать при разработке программ библиотеки подпрограмм, знать функциональные возможности инструментальных средств среды разработки, умение использовать средства отладки программ в среде программирования, умение документировать программы;
- умение создавать веб-страницы;
- владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними, умение использовать табличные (реляционные) базы данных (составлять запросы в базах данных, выполнять сортировку и поиск записей в базе данных, наполнять разработанную базу данных) и справочные системы;
- умение использовать компьютерно-математические модели для анализа объектов и процессов: формулировать цель моделирования, выполнять анализ результатов, полученных в ходе моделирования, оценивать соответствие модели моделируемому объекту или процессу, представлять результаты моделирования в наглядном виде;
- умение организовывать личное информационное пространство с использованием различных средств цифровых технологий, понимание возможностей цифровых сервисов государственных услуг, цифровых образовательных сервисов;
- понимание основных принципов работы, возможностей и ограничения применения технологий искусственного интеллекта в различных областях, наличие представлений о круге решаемых задач машинного обучения (распознавания, классификации и прогнозирования) наличие представлений об использовании информационных технологий в различных профессиональных сферах.

Учебно-методическое обеспечение образовательного процесса

- 1. Информатика (углублённый уровень) (в 2 частях). 10 класс. Ч. 1: учебник / И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. 2-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020. 208 с.: ил.
- 2. Информатика (углублённый уровень) (в 2 частях). 10 класс. Ч. 2: учебник / И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. 2-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020. 232 с.: ил.
- 3. Информатика (углублённый уровень) (в 2 частях). 11 класс. Ч. 1: учебник / И. Г. Семакин, Е. К. Хеннер, Л. В. Шестакова. 2-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020. 176 с.: ил.
- 4. Информатика (углублённый уровень) (в 2 частях). 11 класс. Ч. 2: учебник / И. Г. Семакин, Е. К. Хеннер, Л. В. Шестакова. 2-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020. 216 с.: ил.

Срок реализации учебного предмета «Информатика (углублённый уровень)» – 2 года.